
Recursion

Recursion

• Recursion is a fundamental programming technique that can provide
an elegant solution certain kinds of problems

• We will focus on:
• thinking in a recursive manner

• programming in a recursive manner

• the correct use of recursion

• recursion examples

Outline

Recursive Thinking

Recursive Programming

Using Recursion

Recursion in Graphics

Recursive Thinking

• A recursive definition is one which uses the word or concept being
defined in the definition itself

• When defining an English word, a recursive definition is often not
helpful

• But in other situations, a recursive definition can be an appropriate
way to express a concept

• Before applying recursion to programming, it is best to practice
thinking recursively

Recursive Definitions

• Consider the following list of numbers:

• 24, 88, 40, 37

• Such a list can be defined as follows:

A List is a: number

or a: number comma List

• That is, a List is defined to be a single number, or a number followed
by a comma followed by a List

• The concept of a List is used to define itself

Recursive Definitions

• The recursive part of the LIST definition is used several times,
terminating with the non-recursive part:

Infinite Recursion

• All recursive definitions have to have a non-recursive part called the
base case

• If they didn't, there would be no way to terminate the recursive path

• Such a definition would cause infinite recursion

• This problem is similar to an infinite loop, but the non-terminating
"loop" is part of the definition itself

• You must always have some base case which can be solved without
recursion

Outline

Recursive Thinking

Recursive Programming

Using Recursion

Recursion in Graphics

Recursive Programming

• A recursive method is a method that invokes itself

• A recursive method must be structured to handle both the base case
and the recursive case

• Each call to the method sets up a new execution environment, with
new parameters and local variables

• As with any method call, when the method completes, control
returns to the method that invoked it (which may be an earlier
invocation of itself)

Sum of 1 to N

• Consider the problem of computing the sum of all the numbers
between 1 and any positive integer N

• This problem can be recursively defined as:

Sum of 1 to N

• The summation could be implemented recursively as follows:

// This method returns the sum of 1 to num

public int sum (int num)

{

int result;

if (num == 1)

result = 1;

else

result = num + sum (n-1);

return result;

}

Sum of 1 to N

Recursive Programming

• Note that just because we can use recursion to solve a problem,
doesn't mean we should

• We usually would not use recursion to solve the summation problem,
because the iterative version is easier to understand

• However, for some problems, recursion provides an elegant solution,
often cleaner than an iterative version

• You must carefully decide whether recursion is the correct technique
for any problem

Recursive Factorial

• N!

• For any positive integer N, is defined to be the product of all integers
between 1 and N inclusive

• This definition can be expressed recursively as:

1! = 1

N! = N * (N-1)!

• A factorial is defined in terms of another factorial

• Eventually, the base case of 1! is reached

